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Abstract

This paper concerns the active aeroelastic control of 2-D wing-flap systems operating in an
incompressible flowfield and exposed to a blast pulse. The goal is to implement an active flap control
capability to suppress the flutter instability and enhance the subcritical aeroelastic response to time-
dependent external pulses. To this end, a combined control law is implemented and its performances
toward suppressing flutter and reducing the vibrational level in the subcritical flight speed range is
demonstrated.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The next generation of combat aircraft is likely to operate in more severe environmental
conditions than in the past. This implies that such an aircraft will be exposed to blasts, fuel
explosions, sonic-booms, etc. [1,2].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

A system matrix for first-order differ-
ential equation

Ai;Bi aerodynamic lag state variables
Aij submatrix of A

a elastic pitch angle
a1; a2 coefficients of the two-term approx-

imation of the Wagner function
b semi-chord
B control input matrix
b flap angle
b1; b2 coefficients of the two-term approx-

imation of the Wagner function
c dimensionless distance to flap hinge

line from the elastic axis
C state matrix
CðkÞ Theodorsen’s function
d dimensionless distance to elastic axis

from leading edge
DðtÞ Duhamel’s integral
FðtVf =bÞ Wagner’s function
G disturbance-input matrix
g _h; g_a velocity control gains in plunge and

pitch
h plunging displacement
i

ffiffiffiffiffiffiffi
�1

p

Ia; Ib inertia in pitch and of the aileron
K stiffness matrix

KC gain matrix
Ka;Kb;Kh stiffness of pitch, flap and plunge

spring
L;M lift and aerodynamic moment
M mass matrix
m mass of airfoil
PðtÞ Duhamel’s integral
r air density
S static moment
Sa;Sb static moment of pitch and flap

angles
s dummy time variable
T unsteady torque moment of flap

spring
t time
u control vector
Vf ;V F flight and flutter speeds, respectively
x; y horizontal and vertical coordinates
xEA elastic axis position from the mid-

chord, positive rearward
Y column vector of plunge, pitch, and

flap displacements
wG vertical gust velocity
w external disturbance
ð�Þ

0; ð�Þ00 ¼ dð�Þ=dt;¼ d2ð�Þ=dt2
_ð�Þ; ð�Þ

::
¼ dð�Þ=dt;¼ d2ð�Þ=dt2

�½ 	
T transpose of a matrix
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Under such circumstances, even in the conditions of subcritical flight, the wing structure will be
subjected to large oscillations that can result in its failure by fatigue. Moreover, in some special
events occurring during its operational life, such as escape maneuvers, significant decays of the
flutter speed can occur with dramatic implications for its structural integrity. Passive methods
which have been used to address this problem include added structural stiffness, mass balancing,
and speed restrictions. However, all these attempts to enlarge the operational flight envelope and
to enhance the aeroelastic response result in significant weight penalties, or in unavoidable
reduction of nominal performances. All these facts fully underline the necessity of the
implementation of an active control capability enabling one to fulfill two basic objectives: (1)
to enhance the subcritical aeroelastic response, in the sense of suppressing or even alleviating the
severity of the wing oscillations in the shortest possible time, and (2) to expand the flight envelope
by suppressing flutter instability and so, of contributing to a significant increase of the allowable
flight speed. With this in mind, in this paper the active aeroelastic control of a 2-D wing-flap
system operating in an incompressible flowfield and impacted by a blast will be investigated. This
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model is able to capture most of the dynamics of a 3-D wing and for this reason is still well used in
linear and nonlinear analyses [3,4]. On the other hand, a clear understanding of control
mechanism is of vital importance for complex wing configurations. Moreover, this study can be
viewed as a preliminary work in the context of the morphing wing technology.
In the last two decades, the advances of the active control technology have rendered the

applications of active flutter suppression and active vibrations control systems feasible [3–8]. A
great deal of research activity devoted to the aeroelastic active control and flutter suppression of
flight vehicles has been accomplished. Excellent state-of-the-art discussions of these issues are
presented in Refs. [6,7]. The reader is also referred to a sequence of articles appeared in the
Journal of Guidance, Control and Dynamics [8] where a number of recent contributions related to
the active control of aircraft wing are discussed in detail.
In a classical sense, the active flutter and vibration suppression control is based on the use of a

control surface as a primary control. Its deflection is commanded by a suitable control law, i.e. by
a relationship between the motion of the 2-D wing section and the control surface deflection. In
the present paper, several control strategies, i.e. plunging/pitching velocity feedback control and
their combination, linear-quadratic regulator (LQR) [9–11], modified bang–bang (MBB) [12] and
fuzzy logic control (FLC) [13] are implemented, and some of their relative performances are put
into evidence. From a physical point of view, the active control is achieved by deflecting the
control surface in a manner that alters the overall nature of the aerodynamic forces on the wing,
as to change in a beneficial way the aeroelastic behavior of the wing structure.
In the present paper, corresponding to time-dependent arbitrary motions of a 3-dof airfoil

featuring plunging–pitching–aileron deflection, the aerodynamic forces are derived from
Theodorsen’s equations using Wagner’s function. The equations of motion are presented in
state-space form, suitable for control purposes.
2. Configuration of the 2-D wing-flap structural model

Fig. 1 shows the typical wing-flap section that is considered in the present analysis. This model
has been well established for 2-D aeroelastic analyses, see e.g. Refs. [14,15]. The 3-dof associated
with the airfoil appear clearly from Fig. 1. The pitching and plunging displacements are restrained
by a pair of springs attached to the elastic axis of the airfoil (EA) with spring constants Ka and Kh;
respectively.
The aerodynamically unbalanced control flap is located at the trailing edge. A torsional flap

spring is also attached at the hinge axis of the control surface whose spring constant is Kb; h

denotes the plunge displacement (positive downward), a the pitch angle (measured from the
horizontal at the elastic axis of the airfoil, positive nose-up) and b is the aileron deflection
(measured from the axis created by the airfoil at the control flap hinge, positive flap-down).
3. Governing equations of the aeroelastic model

The governing equations pertinent to the 3-dof aeroelastic systems are available in the classical
aeroelasticity monographs. In matrix form the equations governing the aeroelastic motion of a
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Fig. 1. Typical wing-flap section.
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2-D wing–aileron system can be written as [15,16]

MY
::
ðtÞ þ KYðtÞ ¼ �LðtÞ � LgðtÞ þ LbðtÞ þ LcðtÞ; (1)

where LðtÞ; LgðtÞ; LbðtÞ and LcðtÞ represent the unsteady aerodynamic, gust, blast and control
loads, respectively. In this equation the column vector of plunging/pitching/flapping displace-
ments is defined as

YðtÞ ¼
hðtÞ

b
aðtÞ bðtÞ

� �T
; (2)

while

M ¼

bm Sa Sb

bSa Ia Ib þ bcSb

bSb Ib þ bcSb Ib

264
375; K ¼

bKh 0 0

0 Ka 0

0 0 Kb

264
375 (3)

denote the mass, and stiffness matrices, respectively.
The second-order aeroelastic governing equation can be cast in a first-order state-space form as

_XðtÞ ¼ AXðtÞ þ BuðtÞ þGgwgðtÞ þGbwbðtÞ: (4)

Here A is the aerodynamic matrix; see Appendix A. The state vector is given by

XðtÞ ¼ _hðtÞ=b _aðtÞ _bðtÞ hðtÞ=b aðtÞ bðtÞ B1ðtÞ B2ðtÞ A1ðtÞ A2ðtÞ

 �T

: (5)

B1ðtÞ;B2ðtÞ;A1ðtÞ and A2ðtÞ are the aerodynamic-lag states; uðtÞ is the control input, while
wgðtÞ;wbðtÞ are external disturbances represented in the present case by a time-dependent external
excitation, such as a gust load (identified by a subscript g), an explosive blast, sonic-boom or step
pressure pulses (identified by a subscript b):

wgðtÞ ¼ fwLðtÞ wMðtÞ wT ðtÞg
T; wbðtÞ ¼ ff ðtÞ 0 0gT; (6)
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where f ðtÞ ¼ Pmð1� t=tpÞ½HðtÞ � Hðt � rtpÞ	; see Ref. [1]; Gg;Gb are the disturbance-input matrix
(Gg ¼ Gb; see Appendix A), while B is the control input matrix that is given by

B ¼
1

Ib
ffM�1f0 0 1gTgT 0 0 0 0 0 0 0gT: (7)

In the present approach, different types of control methodologies have been applied, such as
plunging/pitching and combination of velocity feedback controls, LQR, MBB and FLC.
For stability purpose, an infinite-time LQR that leads to a full state-feedback controller of the

form uðtÞ ¼ �KCX; has been used. Herein, KC is the feedback gain matrix, while X is the full state
vector to be defined next. In particular, we use the Riccati equation to solve for an optimal control
uopt:
The aerodynamic load vector appearing in Eq. (1) is expressed in terms of its components as

LðtÞ ¼ fLðtÞ MðtÞ TðtÞ gT; (8)

where L;M and T denote, respectively, the aerodynamic lift (positive in the upward direction), the
pitching moment about the one-quarter chord of the airfoil (positive nose-down), and the flap
torque applied to the flap hinge.
For the gust loading, following Ref. [17],

LgðtÞ ¼ fLGðtÞ MyGðtÞ TT ðtÞ g
T ¼

Z t

0

f ILGðt � sÞ IMGðt � sÞ IfGðt � sÞ gT
wG

Vf

ds; (9)

where wG is the gust vertical velocity, while ILG; IMG and IfG are the related aerodynamic indicial
functions. For the incompressible flow, these are expressed as

f ILGðt � sÞ IMGðt � sÞ I fGðt � sÞ gT ¼ f 4p _c ILGð1=2þ xEA=bÞ 0 g
T: (10)

Küssner’s function c is approximated by [17]

cðtÞ ¼ 1� 0:5e�0:13t � 0:5e�t: (11)

In the time domain, the aerodynamic loads have the form

LðtÞ ¼ prb2 €hðtÞ � bxEA €aðtÞ þ
b

2p
F4 €bðtÞ þ Vf _aðtÞ þ

Vf

p
F3 _bðtÞ

 �
þ 2prVf bDðtÞ; (12)

MðtÞ ¼ prb3 �xEA €hðtÞ þ b 1
8
þ x2EA

� �
€aðtÞ þ

b

4p
F7 €bðtÞ þ 1

2
� xEA

� �
Vf _aþ

Vf

2p
F6 _bðtÞ


þ

V2
f

pb
F5bðtÞ

#
� 2prb2 1

2
þ xEA

� �
Vf DðtÞ; ð13Þ

TðtÞ ¼ prb2
b

2p
F4

� �
€hðtÞ þ

b2

4p
F7

� �
€aðtÞ þ

b2

2p2
F12

� �
€bðtÞ þ

bV f

2p
F9

� �
_a


þ

bVf

2p2
F11

� �
_bðtÞ þ

V2
f

p2
F10

 !
bðtÞ

#
þ prVf bPðtÞ; ð14Þ
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where FiðfÞ are Theodorsen’s constants [15,16], while f ¼ arccosð�xflap=bÞ: These transient
aerodynamic loads are obtained from a Fourier transform of the two-dimensional incompressible
oscillatory coefficients, see e.g. Refs. [18,19]. The functions DðtÞ and PðtÞ are Duhamel integrals
given by

fDðtÞ PðtÞ g ¼

Z t

0

F
ðt � sÞVf

b

 �
fQ0

1ðsÞ Q0
2ðsÞ gds; (15)

where F½Vf ðt � sÞ=b	 is Wagner’s function. In addition, for a system that is initially at rest, Q0
1ðtÞ

and Q0
2ðtÞ are expressed as [17,20]

Q0
1ðtÞ 

dQ1ðtÞ
dt

� �
¼ h00

ðtÞ þ 1
2
� xEA

� �
ba00ðtÞ þ

b

2p
F2b

00
ðtÞ þ Vf a0ðtÞ þ

Vf

p
F1b

0
ðtÞ; (16)

Q0
2ðtÞ 

dQ2 tð Þ

dt

� �
¼

b

p
F8h

00
ðtÞ þ

b2

p
1
2
� xEA

� �
F8a00ðtÞ þ

b2

2p2
F2F8b

00
ðtÞ þ

Vf b

p
F8a0ðtÞ

þ
Vf b

p2
F1F8b

0
ðtÞ ¼

b

p
F8Q0

1ðtÞ; ð17Þ

where the dimensionless time t is expressed as t ¼ tVf =b and ð�Þ0; ð�Þ00 ¼ dð�Þ=dt;¼ d2ð�Þ=dt2: Q1ðtÞ
and Q2ðtÞ are measures of the circulation about the airfoil with flap. The standard two-term Jones’
exponential approximation of Wagner’s function (incompressible flow field) is adopted here and is
given by [15]

FðtÞ ¼ 1� a1e�b1t � a2e�b2t; a1 ¼ 0:165; a2 ¼ 0:335; b1 ¼ 0:041; b2 ¼ 0:32: (18)

DðtÞ and PðtÞ are evaluated following the procedure highlighted in Refs. [19,20]. Substitution of
Eq. (18) in Eq. (15) yields

fDðtÞ PðtÞ g ¼ fQ1ðtÞ � a1B1ðtÞ � a2B2ðtÞ Q2ðtÞ � a1A1ðtÞ � a2A2ðtÞ g; (19)

where Q1ðtÞ and Q2ðtÞ are obtained in the time domain from Eqs. (16) and (17) via integration

Q1ðtÞ ¼
_hðtÞ þ _aðtÞ 1

2
� xEA

� �
b þ

b

2p
F2 _bðtÞ þ Vf aðtÞ þ

Vf

p
F1bðtÞ; (20)

Q2ðtÞ ¼
b

p
F8 _hðtÞ þ

b2

p
1
2
� xEA

� �
F8 _aðtÞ þ

b2

2p2
F2F8 _bðtÞ þ

Vf b

p
F8aðtÞ þ

Vf b

p2
F1F8bðtÞ

¼
b

p
F8Q1ðtÞ: ð21Þ

Herein the overdots denote time derivatives with respect to t. One should remark that the
aerodynamics incorporated in the model is in the form of the aerodynamic indicial function. The
motivation for its use stems from the fact that it enables to obtain linearized unsteady aerodynamic
loads in the time domain via Duhamel’s convolution. The indicial functions can be derived via
various approaches, such as rational approximation, computational fluid dynamics (CFD), or in an
experimental way. Based on the concept of indicial functions, a unified representation of linear
unsteady aerodynamic loads in incompressible, compressible subsonic and supersonic flows can be
developed; see Refs. [21–24]. For problems related to the determination of lift and moment
responses to penetration of sharp-edged traveling gusts, the reader is referred to Refs. [25–28].
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4. Numerical simulation

The geometrical and physical characteristics of the 2-D wing-flap system to be used in the
present numerical simulations are presented in Table 1. The flutter speed for this model is VF ¼

457 ft=s: In order to validate the result present in this paper a comparison is done using the
parameters presented in Refs. [15,17], for which the calculated flutter speed is VF ¼ 890 ft=s: The
critical value of the flutter speed is obtained herein via the solution of both the complex eigenvalue
problem and from the subcritical aeroelastic response analysis and an excellent agreement with
Refs. [15,17] is reached.
Within the present simulations, due to the fact that the proportional and acceleration controls

were proven to be less efficient, only combined velocity feedback control laws were used. As a
result, herein, plunging/pitching velocity feedback control and their combination are used. These
relate the control input uðtÞ; i.e. the required flap deflection angle, to the decoupled plunging and
pitching velocities of the main airfoil surface. Hence uðtÞ is represented according to the law

uðtÞ ¼ g _hð
_h=bÞ þ g_a _a; (22)

where g _h and g_a are the corresponding control gains.
A more encompassing control law, that includes plunging/pitching deflections and plunging/

pitching accelerations is presented in Ref. [29]. As remarked in Ref. [29], from the mathematical
point of view, it can be assumed that, instead of moving the flap with a required deflection, an
equivalent control hinge moment can be incorporated into the open-loop aeroelastic governing
equation (4). This is analytically valid since this external moment acts on the flap-hinge and affects
only the b dof.
There is no doubt that more encompassing control laws can be implemented. In this context,

two optimal feedback control methodologies, namely LQR and MBB, and a FLC have been
applied.
In the presence of external time-dependent excitations, the determination of the time-history of

the quantities ðehð h=bÞ; a;bÞ; at any flight speed lower than the flutter speed, requires the solution
of a boundary-value problem [9]. In the absence of the control input, the open-loop aeroelastic
response is obtained, whereas in the presence of the control, the closed-loop aeroelastic response is
derived.
Several results displaying the closed/open-loop aeroelastic response to selected types of loads

are supplied next. Details on the blast, sonic-boom and gust loads are available in Refs.
[1,2,9,13,23].
In Figs. 2(a) and (b), the open/closed response time-histories of the quantities ðeh; aÞ of the

aeroelastic system operating in close proximity to the flutter boundary (Vf ¼ 456:5 ft=sÞ and
subjected to a blast load (represented in the inset of the respective figures) and characterized
throughout numerical simulation by Pm=1.0 lb/ft, are presented.
The result reveal that in the absence of the control, the amplitudes of the response quantities are

on the verge of increasing in time, implying that the system is in close proximity to the flutter
instability. However, in the presence of the plunging velocity feedback control (identified by the
gain g _h), and especially, of the combined velocity feedback control (identified by the gains g_a; g _h),
as time unfolds, the amplitudes decay rapidly. In this analysis, a combined plunging–pitching
velocity feedback control law will produce a combination of effects, implying that this type of
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Table 1

2-D wing-flap section parameters

b ¼ 1 ft Kh ¼ 500m

xEA ¼ �0:3 Ka ¼ 2000Ia
c ¼ 1:0 Kb ¼ 18; 000Ib
m ¼ 1:88181 slugs=ft r ¼ 0:002378 slugs=ft3

Ib ¼ 0:037804 slugs ft2=ft Sb ¼ 0:030243 slugs

Sa ¼ 0:483894 slugs Ia ¼ 1:51217 slugs ft2=ft
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control law proves to be more effective than that based on either the plunging, or pitching velocity
feedback control alone. In addition, it can be also shown that the pitching velocity feedback
control alone is more efficient than the plunging one.
The open-loop time-histories of quantities ðeh; a; bÞ of the aeroelastic system subjected to a step

pulse are depicted in Fig. 3. It is clearly revealed that in this case, at the flight speed Vf 4VF ;
oscillations with exponentially growing amplitudes occur.
In Figs. 4(a)–(c) there are depicted the open-loop plunging, pitching and aileron flapping

aeroelastic time-histories, exposed to a graded gust, for selected subcritical flight speeds.
In this connection, it should be noticed that, for eh and a; higher amplitudes correspond to lower

flight speeds, and, for the same quantities, the flutter appears when the oscillation amplitudes are
lower than those featured at lower flight speeds. This feature was highlighted also in Refs. [1,22].
However, for b an opposite trend occurs. It is also evident that, for values of the flight speed larger
than the flutter speed, oscillations with exponentially growing amplitudes occur.
This is even more evident in Fig. 5 where there are displayed the open/closed-loop plunging

aeroelastic time-histories of the airfoil with flap exposed to a step pulse, for selected flight speeds.
Whereas for flight speeds below the flutter speed, a very little influence of the control is visible, in
the sense of a marginal influence on the time-history, at Vf4VF the flutter response is converted,
by its action, into a stable response.
In Figs. 6(a)–(c) the open-loop dimensionless plunging, pitching and flapping time-histories of

the aeroelastic system operating at three different flight speeds (Vf ¼ 400; 440 ft=s; Vf ¼ VF ) and
exposed to a blast pulse are presented. With the increase of the flight speed, a growth of the
aeroelastic response deflection is experienced.
The counterparts of Figs. 6(a) and (b) for the open-loop system exposed to a symmetric sonic-

boom ðr ¼ 2Þ for the same flight speed regime are depicted in Figs. 7(a) and (b). Similar
conclusions can be reached. For a speed VfoVF ; it becomes apparent that the amplitude of the
response decreases with the increase of the speed. However, for Vf ¼ VF the response becomes
unbounded, implying that the occurrence of the flutter instability is impending. It should be
noticed that the response to sonic-boom pressure pulses involves two regimes: one that
corresponds to the forced motion, and the other that corresponds to free motion. The jump
appearing in the graph is due to the discontinuity in the sonic-boom pulse occurring at tp ¼ 10 s:
For explosive pressure pulses, where r ¼ 1; the jump does not occur (Figs. 6(a) and (b)).
The influence of combined velocity feedback controls on the aeroelastic response of a typical

section wing with the flap exposed to an asymmetric sonic boom ðr ¼ 1:5Þ is presented in Fig. 8.
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Fig. 2. (a) Open/closed-loop plunging time-history under an explosive blast ðtp ¼ 10 s): ........, g_a ¼ 0:3; ——-, g_a ¼

g _h ¼ 0:3: Pitching and combined plunging/pitching velocity feedback control laws. (b) Pitching time-history

counterpart.

L. Librescu et al. / Journal of Sound and Vibration 283 (2005) 685–706 693



ARTICLE IN PRESS

0

1×10-7

8×10-8

6×10-8

4×10-8

2×10-8

-2×10-8

0 10 20 30 40 50

h,�,�

Time (s)

h
~

~

wG

Vf=467 ft/sec

t (s)

�

�

Fig. 3. Open-loop response of the aeroelastic system under a step pulse ðVf ¼ 467 ft=sÞ: h; plunging; a; pitching; b;
flapping time-histories.
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The results reveal that by increasing the feedback gains from g _h ¼ g_a ¼ 0:1 to g _h ¼ g_a ¼

0:2 lb=ðft sÞ; the system is stabilized in a shorter time.
In Figs. 9 and 10 the influence on the dimensionless displacement time-histories in pitching and

flapping to a graded gust load for control laws characterized by (g _h ¼ 0:05; 0:3 lb=ðft sÞ) and
(g_a ¼ 0:1; 0:3 lb=ðft sÞ) are presented. In both cases, for flight speeds larger than the flutter speed,
the system remains unstable even in the presence of the control.
The optimal control methodology is likely to be more effective from the point of view of the

performance of the control. Fig. 11 displays the open/closed-loop pitching aeroelastic time-
histories of the airfoil impacted by a step pulse for selected values of the flight speed. From this
plot the high efficiency of the application of the LQR toward stabilizing the airfoil operating at
the flutter speed is appearing. Also this result has been validated; see Refs. [9,10]. On the same
plot, also the uncontrolled response for Vf ¼ VF is presented.
For the same type of external excitation, Fig. 12 shows that for the control input considered

here, whereas FLC ðsc1 ¼ 9� 107; sc2 ¼ 1� 107; sc3 ¼ 3� 10�7Þ is not able to stabilize the
system, MBB ðumax ¼ 3� 10�7 lb=ftÞ proves to be highly efficient towards its stabilization.
In Figs. 13(a) and (b) the performance of the application of the LQR and MBB to stabilize the

pitching aeroelastic response of the airfoil exposed to a step pulse are presented. While in Fig.
13(a), umax ¼ 3� 10�7 lb=ft; in Fig. 13(b), umax ¼ 3� 10�8 lb=ft: Both control methodologies
appear to be very successful. However, as it appears from Fig. 13(b) for which a lower control
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Fig. 4. (a) Open-loop plunging ð ~hÞ aeroelastic response of the aeroelastic system under a graded gust for selected flight
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Effect of the control. ........, uncontrolled; ——, controlled.
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input was considered, the MBB control methodology appears more efficient than the LQR that is
not able to stabilize the aeroelastic system.
It is worth remarking that the methodology presented here can be extended to the compressible

flight speed regimes. In this sense, proper aerodynamic indicial functions for the compressible
subsonic, supersonic and hypersonic flight speed regimes have to be applied; see Refs. [21–24].
However, the goal of this paper was restricted to the issue of the illustration of the methodology
and to that of highlighting the importance of the implementation of the active control on the
lifting surfaces equipped with a flap.
5. Conclusions

Results related to the aeroelastic response and control of 2-D wing-flap systems operating in an
incompressible flight speed and exposed to blast/gust loads are presented. Plunging/pitching
velocity feedback controls and combined controls, as well as optimal control methodologies such
as LQR, MBB and FLC are considered, and their relative performances are highlighted. It clearly
appears that, in addition to its inherent virtues of involving a constraint in the control input, MBB
appears to be more efficient than LQR, FLC and the velocity feedback control methodologies.
Dealing with the aeroelastic response, the necessity of addressing it in the time-domain becomes
evident. As a result, the aerodynamics based on the concept of the aerodynamic indicial function



ARTICLE IN PRESS

0

8×10-6

6×10-6

6×10-7

4×10-7

2×10-7

-2×10-7

2×10-7

1.5×10-7

1×10-7

-1×10-7

-1.5×10-7

-2×10-7

0.5×10-8

-0.5×10-8

-4×10-7

-6×10-7

-8×10-7

4×10-6

2×10-6

h
Vf=400 ft/sec

440 ft/sec
Vf=VF

~

10

Pm

t(s)

0

Vf =400  ft/sec 440 ft/sec Vf=VF

0

0 5 10 15 20 25 30
Time (s)

Vf =VF V
f
=440  ft/sec 400 ft/sec

β

α

(c)

(b)

(a)

Fig. 6. (a) Open-loop response of the aeroelastic system under an explosive blast ðtp ¼ 10 sÞ; for selected flight speeds.
Plunging ð ~hÞ time-history. (b) Pitching ðaÞ time-history counterpart. (c) Flapping ðbÞ time-history counterpart.

L. Librescu et al. / Journal of Sound and Vibration 283 (2005) 685–706 697



ARTICLE IN PRESS

0

1×10-5

8×10-6

6×10-6

4×10-6

2×10-6

-2×10-6

-4×10-6

-6×10-6

h

V
f
=V

F V
f
=440 ft/sec

400 ft/sec

~

0

1.5×10-6

1×10-6

-1×10-6

-1.5×10-6

0.5×10-7

-0.5×10-7

0 5 10 15 20 25 30
Time (s)

Vf =400 ft/sec 440 ft /sec

Vf =VF

Pm

20

t(s)

α

(a)

(b)

Fig. 7. (a) Open-loop plunging ð ~hÞ time-history response of the aeroelastic system under a sonic-boom pulse for selected
flight speeds ðtp ¼ 10 s; r ¼ 2). (b) Pitching ðaÞ time-history counterpart.

L. Librescu et al. / Journal of Sound and Vibration 283 (2005) 685–706698
not only indicate that they are most appropriate for addressing this problem, but in addition,
prove to be of great efficiency. Moreover, its use can be extended to various flight speed regimes,
i.e. compressible subsonic, transonic and supersonic, and as a result, an unified approach
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Fig. 8. Open/closed-loop plunging time-history of the aeroelastic system under a sonic-boom pulse ðtp ¼ 10 s; r ¼ 2).

Plunging/pitching and combined velocity feedback control laws. .........., g _h ¼ g_a ¼ 0:1; ——, g _h ¼ g_a ¼ 0:2:
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of this problem becomes feasible. Results addressing these additional issues will be presented
elsewhere.
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Appendix A. Flutter and aeroelastic response

In order to be reasonably self-contained, a few steps enabling one to obtain the flutter
and aeroelastic response are provided here. Detailed developments are supplied in Ref. [18,20,21].
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The 10 first-order simultaneous differential equations of the aeroelastic airfoil-flap system can
be represented in the form

_XðtÞ ¼
d

dt

_YðtÞ

YðtÞ

xAðtÞ

8><>:
9>=>; ¼

€YðtÞ
_YðtÞ

_xAðtÞ

8><>:
9>=>; ¼ A

_YðtÞ

YðtÞ

xAðtÞ

8><>:
9>=>;þ BuðtÞ þGgwgðtÞ þGbwbðtÞ; (A.1)

where xAðtÞ contains the four aerodynamic state variables:

xAðtÞ ¼ ½B1ðtÞ B2ðtÞ A1ðtÞ A2ðtÞ	
T: (A.2)

The aerodynamic matrix is given as

A
10�10

¼

A11 A12 A13

A21 A22 A23

A31 A32 A33

264
375: (A.3)

Notice that Aij is the submatrix of A: Collecting the terms, the open-loop governing equation
reduces to

½Mþ prb2Z1	 €YðtÞ ¼ � KYðtÞ � prb2fZ2 _YðtÞ þ Z3YðtÞ þ Z4xAðtÞg

� prb3

1 0 0

0 1 0

0 0 1

2664
3775

wLðtÞ þ f ðtÞ

wMðtÞ

wf ðtÞ

8>><>>:
9>>=>>;: ðA:4Þ

This system of equations can be solved for €YðtÞ:

€YðtÞ ¼ � ½Mþ prb2Z1	
�1fprb2Z2 _YðtÞ þ ðKþ prb2Z3ÞYðtÞ þ prb2Z4xAðtÞg

� prb3½Mþ prb2Z1	
�1

1 0 0

0 1 0

0 0 1

2664
3775

wLðtÞ þ f ðtÞ

wMðtÞ

wf ðtÞ

8>><>>:
9>>=>>;: ðA:5Þ

The model of the controlled lifting surface with flap under gust loads is given by

€YðtÞ
_YðtÞ

_xAðtÞ

8><>:
9>=>; ¼ A

_YðtÞ

YðtÞ

xAðtÞ

8><>:
9>=>;�G

wLðtÞ þ f ðtÞ

wMðtÞ

wf ðtÞ

8><>:
9>=>;þ BuðtÞ; (A.6)

where the disturbance-input matrix, G; and the external disturbance vector, wðtÞ; are defined as

G ¼ �prb3½Mþ prb2Z1	
�1

1 0 0

0 1 0

0 0 1

07�3

266664
377775; (A.7)

wðtÞ ¼ fwLðtÞ þ f ðtÞ wMðtÞ wf ðtÞ g
T: (A.8)
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In addition, the following matrices are needed:

r1 ¼ ½R1 R2 R3	; r2 ¼ ½0 R4 R5	; r3 ¼ ½R6 R7 R8	; r4 ¼ ½0 R9 R10	; (A.9)

A11
3�3

¼ �½Mþ prb2Z1	
�1prb2Z2; A12

3�3

¼ �½Mþ prb2Z1	
�1½Kþ prb2Z3	; (A.10)

A13
3�4

¼ �½Mþ prb2Z1	
�1prb2Z4; A21 ¼ I3�3; A22 ¼ 03�3; A23 ¼ 03�4; (A.11)

A31
4�3

¼

r1A11 þ r2

r1A11 þ r2

r3A11 þ r4

r3A11 þ r4

26664
37775; A32

4�3

¼

r1A12

r1A12

r3A12

r3A12

26664
37775; (A.12)

A33
4�4

¼

�b1Vf

b
0 0 0

0
�b2Vf

b
0 0

0 0
�b1Vf

b
0

0 0 0
�b2Vf

b

2666664

3777775þ

r1A13

r1A13

r3A13

r3A13

26664
37775: (A.13)

In Eqs. (A.10) and (A.11),

Z1 ¼

L €h L€a L €b

M €h M €a M €b

T €h T €a T €b

264
375; Z2 ¼

L _h L_a L _b

0 M _a M _b

T _h T _a T _b

264
375; (A.14)

Z3 ¼

0 La Lb

0 0 Mb

0 Ta Tb

264
375; Z4 ¼

LB1 LB2 0 0

0 0 0 0

0 0 TA1
TA2

264
375; (A.15)

f�LðtÞ � MðtÞ � TðtÞgT ¼ �prb2fZ1 €YðtÞ þ Z2 _YðtÞ þ Z3YðtÞ þ Z4xAðtÞg: (A.16)

Concerning the coefficients Ri appearing in Eqs. (A.9), these are defined in terms of the Fi

coefficients derived in Ref. [16], and on the flight and geometrical parameters

R1 ¼
b2

Vf

; R2 ¼
b2

Vf

1
2
� xEA

� �
; R3 ¼

F2b
2

2pVf

; R4 ¼ Vf ;

R5 ¼
F1Vf

p
; R6 ¼

F8b
3

pVf

; R7 ¼
F8b

3

pVf

1

2
� xEA

� �
;

R8 ¼
F2F8b

3

2Vf p2
; R9 ¼

F8Vf b

p
; R10 ¼

F1F8Vf b

p2
: ðA:17Þ

The first-order differential equation for the aerodynamic lag states is written as [19,20]

_xAðtÞ ¼ PxAðtÞ þ _Q; (A.18)
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or in a detailed form:

_xAðtÞ ¼ _B1ðtÞ _B2ðtÞ _A1ðtÞ _A2ðtÞ

 �T

¼

�b1Vf

b
0 0 0

0
�b2V f

b
0 0

0 0
�b1V f

b
0

0 0 0
�b2Vf

b

266666664

377777775
B1ðtÞ

B2ðtÞ

A1ðtÞ

A2ðtÞ

8>>>>><>>>>>:

9>>>>>=>>>>>;
þ

_Q1ðtÞ

_Q1ðtÞ

_Q2ðtÞ

_Q2ðtÞ

8>>>>><>>>>>:

9>>>>>=>>>>>;
; ðA:19Þ

_Q1ðtÞ ¼ fR1 R2 R3g €YðtÞ þ f0 R4 R5g _YðtÞ ¼ r1 €YðtÞ þ r2 _YðtÞ; (A.20)

_Q2ðtÞ ¼ fR6 R7 R8g €YðtÞ þ f0 R9 R10g _YðtÞ ¼ r3 €YðtÞ þ r4 _YðtÞ: (A.21)

In the time domain the aerodynamic loads have the form presented in Eqs. (12)–(14). As stated in
Refs. [19,20], the formulation presented here eliminates the need of evaluating the Duhamel
integrals. In this sense, the aerodynamic governing equations reduces to a system of first-order
differential equation.
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